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ABSTRACT: Most observed patterns of recent Arctic surface warming and sea ice loss lie outside of unforced internal cli-
mate variability. In contrast, human influence on related changes in outgoing longwave radiation has not been assessed.
Outgoing longwave radiation captures the flow of thermal energy from the surface through the atmosphere to space, mak-
ing it an essential indicator of Arctic change. Furthermore, satellites have measured pan-Arctic radiation for two decades
while surface temperature observations remain spatially and temporally sparse. Here, two climate model initial-condition
large ensembles and satellite observations are used to investigate when and why twenty-first-century Arctic outgoing long-
wave radiation changes emerge from unforced internal climate variability. Observationally, outgoing longwave radiation
changes from 2001 to 2021 are within the range of unforced internal variability for all months except October. The model-
predicted timing of Arctic longwave radiation emergence varies throughout the year. Specifically, fall emergence occurs a
decade earlier than spring emergence. These large emergence timing differences result from seasonally dependent sea ice
loss and surface warming. The atmosphere and clouds then widen these seasonal differences by delaying emergence more
in the spring and winter than in the fall. Finally, comparison of the two ensembles shows that more sea ice and a more
transparent atmosphere during the melt season led to an earlier emergence of forced longwave radiation changes. Overall,
these findings demonstrate that attributing changes in Arctic outgoing longwave radiation to human influence requires un-
derstanding the seasonality of both forced change and internal climate variability.

KEYWORDS: Arctic; Infrared radiation; Longwave radiation; Radiation budgets; Satellite observations;
Internal variability

1. Introduction

Attributing changes in Earth’s climate to human actions re-
mains a challenging and societally relevant task (e.g., National
Academies of Sciences, Engineering and Medicine 2016;
Knutson et al. 2017; Eyring et al. 2021). Attribution requires
both observational records of occurring changes as well as
knowledge of the climate’s internal variability (variability arising
naturally from interactions within the coupled climate system)
(Weatherhead et al. 1998). Continuous multidecadal observa-
tional records quantify the former, while initial-condition cli-
mate model large ensembles have proved an invaluable tool
for understanding the latter (Deser et al. 2020). With climate
change in the Arctic far outpacing the global mean (e.g., Chylek
et al. 2022), evaluating if observed Arctic change has emerged
from the background internal climate variability is an especially
relevant task. Numerous studies have used observations and
large ensembles to investigate the emergence of changes in

Arctic surface temperature, sea ice, and precipitation (Gillett
et al. 2008; Kay et al. 2011; Barnhart et al. 2016; Fyfe et al. 2013;
Kirchmeier-Young et al. 2017; Landrum and Holland 2020;
England et al. 2021). In addition to confirming that the rapid
pace of observed change is inconsistent with an unforced cli-
mate, these studies collectively demonstrate that emergence is
occurring at different rates depending on the climate process
and the time of the year.

Early coupled global climate models showed that enhanced
Arctic warming was driven by local climate processes occurring
at the Arctic surface (Manabe and Stouffer 1980). While scien-
tific knowledge of Arctic climate change has matured since then
(e.g., Taylor et al. 2022), understanding surface processes re-
mains essential (Screen and Simmonds 2010; Serreze and Barry
2011). Furthermore, surface warming and sea ice loss dominate
observed Arctic climate change (Serreze et al. 2009). While
previous studies have extensively researched climate change
emergence at the Arctic surface, the emergence of changes in
the top-of-atmosphere (TOA) energy budget remains relatively
unexplored.

Change in TOA radiative energy captures both the drivers of
and responses to anthropogenic emissions (e.g., Forster et al.
2021), making it a fundamental indicator of climate change. Ob-
servations from NASA’s Clouds and the Earth’s Radiant En-
ergy System (CERES) mission have measured broadband
short- and longwave radiation since 2000, creating a multideca-
dal record of Earth’s radiation budget that is ideal for studies of
climate change emergence (Loeb et al. 2018). While emergence
studies of TOA radiation have been performed for the global
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radiation budget (Raghuraman et al. 2021), only the shortwave
portion of the Arctic radiation budget has been studied in the
context of climate change emergence (e.g., Sledd and L’Ecuyer
2021a,b). Observations of Arctic TOA longwave radiation aid
the identification of changing climate processes (Peterson et al.
2019; Boisvert and Stroeve 2015), but there is yet to be a study
that examines observed changes over the entire Arctic seasonal
cycle and places them in the broader context of internal climate
variability.

In this study, we investigate when and why Arctic outgoing
longwave radiation will emerge from internal climate variabil-
ity and thus be attributable to human-caused climate change.
We focus on two research questions:

1) When do monthly and annual changes in Arctic longwave
radiation emerge from unforced internally generated cli-
mate variability, and have any observed changes already
emerged?

2) What climate processes drive seasonal differences in the pro-
jected emergence of Arctic longwave radiation? Specifically,
what are the relative contributions of the Arctic surface, at-
mosphere, and clouds in controlling the forced trends and in-
ternal variability of top-of-atmosphere longwave radiation?

We begin by comparing observed longwave radiation changes
with internal variability estimated from the preindustrial control
simulation of a coupled climate model. We then use an initial-
condition large ensemble from the same climate model to esti-
mate future changes in Arctic longwave radiation and predict
future emergence. By separating contributions from the Arctic
surface, atmosphere, and clouds, we identify the climate pro-
cesses both driving and delaying the emergence of longwave ra-
diation changes. Finally, we evaluate the influence of sea ice
and clouds by comparing our results with a second climate
model ensemble. While we present results for all months of the
year, we focus on the Arctic fall and spring when our predic-
tions of emergence are earliest and latest, respectively. We find
that variability and forced changes in longwave radiation are
closely tied to surface temperatures and sea ice coverage. Addi-
tionally, the Arctic atmosphere and clouds delay the emergence
of top-of-atmosphere longwave radiation relative to the surface
by more in the spring and winter than in the fall.

2. Methods

a. Modeling and observational datasets

To quantify both forced climate change and unforced internal
climate variability, we use simulations from the Community
Earth System Model Version 1 (CESM1) (Hurrell et al. 2013).
CESM1 is a fully coupled global climate model with dynamic at-
mosphere, ocean, sea ice, and land components. Specifically, we
use the CESM1 Large Ensemble (CESM1-LE) (Kay et al. 2015).
The CESM1-LE is a single model initial-condition large ensem-
ble consisting of 40 ensemble members with historical forcings
applied from 1920 to 2005 and the representative concen-
tration pathway 8.5 forcing (“business-as-usual” emissions
scenario) applied from 2006 onward. Individual members of
the CESM1-LE exhibit a range of climate responses due to

external forcing and internal climate variability. Averaging
these 40 identically forced members of the same model isolates
the response to the applied anthropogenic forcing (the forced
response). We also use the 1800-yr CESM1-LE preindustrial
control simulation with 1850 forcing to quantify internal cli-
mate variability in a steady-state climate.

The performance of CESM1 both in and outside of the Arctic
has been extensively studied. Critical to the Arctic radiation
budget, CESM1 can reproduce the seasonal cycles of sea ice ex-
tent and sea ice thickness, as well as the observed record of sea
ice loss (Ding et al. 2018; Jahn et al. 2016). Furthermore, the sen-
sitivity of Arctic sea ice extent to observed temperature changes
overlaps with observationally derived estimates (Jahn 2018).
Critical to studies of climate signal emergence, CESM1 also cap-
tures observed variability in Arctic sea ice (Wyburn-Powell et al.
2022). CESM1’s representation of the Arctic, however, is not
without biases. Specifically, the Arctic surface is colder than ob-
servations (Kay et al. 2016; McIlhattan et al. 2020) and there is
insufficient liquid-containing cloud cover and longwave cloud ra-
diative effect (English et al. 2014; Kay et al. 2016).

To investigate how differences in the representation of Arctic
sea ice and clouds influence emergence, we additionally employ
large ensemble simulations from CESM2 (Danabasoglu et al.
2020; Holland et al. 2023, manuscript submitted to Geosci.
Model Dev.). Changes between CMIP5 and CMIP6 forcings
lead to differences in the Arctic climate (Fasullo et al. 2022;
Holland et al. 2023, manuscript submitted to Geosci. Model
Dev.), confounding comparisons between model generations.
To remove the influence of inconsistent external forcings, we
use simulations of CESM2 with external forcing identical to the
CESM1-LE. This ten member ensemble (subsequently referred
to as the CESM2-CMIP5) can be directly compared to the
CESM1-LE to isolate the influence of model physics on Arctic
climate change and climate signal emergence. Compared to
CESM1, CESM2 has more liquid containing clouds and an im-
proved representation of downwelling radiation at the Arctic
surface (McIlhattan et al. 2020). Conversely, sea ice extent and
thickness is reduced in CESM2 relative to CESM1, degrading
agreement with observations (DeRepentigny et al. 2020; Kay
et al. 2022).

Given the difference in ensemble size between the CESM1-LE
and the CESM2-CMIP5, we use bootstrapping to make appropri-
ate comparisons. We resample members of the CESM1-LE to
produce bootstrapped ensembles with the same ensemble size as
the CESM2-CMIP5. We compare mean values from the CESM2-
CMIP5 with 95% confidence intervals estimated from 3000 boot-
strapped ensembles of the CESM1-LE. When comparing internal
variability between the models, we resample the CESM1-LE
preindustrial control run in 500-yr segments to compare appro-
priately with the CESM2-CMIP5’s 500-yr preindustrial control
simulation.

In addition to model output, we use up-to-date multidecadal
observational records of Arctic change. Most important to this
study, we use observed all-sky outgoing longwave radiation
(OLR) and absorbed shortwave radiation from the CERES En-
ergy Balanced and Filled (EBAF) Version 4.1 dataset (NASA/
LARC/SD/ASDC 2019). These observations can be directly
compared with corresponding CESM1 radiation fields. To
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additionally understand the importance of clouds and the at-
mosphere in CESM1, we also use clear-sky outgoing longwave
radiation (clear-sky OLR) and surface upwelling longwave ra-
diation fields from model experiments. Finally, we use passive
microwave sea ice observations from the NSIDC G02202 v4
data product (Meier et al. 2021) and surface temperature re-
cords from the Berkeley Earth Surface Temperature (BEST)
dataset (Rohde and Hausfather 2020) to capture Arctic surface
change and complement the CERES top-of-atmosphere per-
spective. All of these observational datasets have monthly tem-
poral resolution, and are interpolated to a common 183 18 grid.

b. Defining and estimating the time to emergence of a
climate signal

Climate signal emergence occurs when an observed cli-
mate change exceeds the background of internal climate
variability. With knowledge of internal variability and pro-
jections of future change, we can also predict the time to
emergence of a climate variable that has not yet emerged
in the observational record. Here, we build upon the time-
to-emergence methods of Weatherhead et al. (1998), Leroy
et al. (2008), and Phojanamongkolkij et al. (2014). These
existing methods use a signal-to-noise framework that ac-
counts for the intrinsic internal variability and memory of
climate variables. To focus on understanding the climate
processes controlling forced change and internal climate
variability, we study climate signal emergence in the ab-
sence of observational uncertainty.

We use the common definition that a climate signal emerges
from internal variability when the measured trend m exceeds
two standard deviations of trend uncertainty (Tiao et al. 1990;
Weatherhead et al. 1998). Following Leroy et al. (2008) and
Phojanamongkolkij et al. (2014), the standard deviation of a cli-
mate trend’s uncertainty sm can be written as

sm 5
12dt
T3 s2

vartvar

( )1/2
, (1)

where dt is the time interval, T is the number of evenly spaced
points in a measured time series, svar is the standard deviation
of internal climate variability, and tvar is the correlation time
of internal climate variability for time scales of one year and
longer. The trend uncertainty term sm has units of the ob-
served trend (in this case W m22 yr21), the standard deviation
term svar has units of the climate signal (in this case W m22),
and the correlation tvar has units of the time resolution used (in
this case years). The term tvar quantifies the degree of correla-
tion between points in a time series. A value of one indicates
that measurements are uncorrelated and contain independent
information, while values greater than one indicate correlation
between measurements and thus less confidence in a measured
trend. For the annual time series evaluated here, dt 5 1 and is
subsequently ignored.

Equation (1) shows that trend uncertainty can be completely
characterized by the standard deviation and correlation time of
internal variability. While the climate “signal” is simply the
measured trend m, the analogous “noise” or net internal vari-
ability term is svart

1/2
var. We estimate the time to emergence T*

by setting the magnitude of the observed trend |m| equal to two
standard deviations of trend uncertainty and solving for T:

T* 5 48
s2
vartvar
|m|2

( )1/3
: (2)

While the signal-to-noise method summarized by Eqs. (1) and (2)
provides a useful framework for estimating time to emergence,
this method does not diagnose what climate processes cause a sig-
nal to emerge. To understand why outgoing longwave radiation
emerges earlier or later for different months of the year, we sepa-
rate the effects of the strength of forced trends and the character-
istics of internal variability. We separate each contribution by
comparing each month to an “average month,” where the aver-
age month has the mean properties of all months of the year.
The “average month” is distinct from the annual average because
forced trends and internal variability characteristics are calculated
before averaging across all months. The time to emergence of the
average month is then given by

T*
avg 5 48

svar
2tvar

|m|2
( )1/3

, (3)

where overbars indicate an average taken over all months of the
year. The internal variability terms tvar and svar are constant, but
the strength of the forced trend m varies in time. Consequently,
we calculate |m| at the mean time of emergence for each month to
ensure consistency with monthly estimates of time to emergence.

The time to emergence for any month can then be written
as the time to emergence of the average month scaled by
terms describing how the strength of the forced trends and in-
ternal variability differ from the “average month”:

T* 5 T*
avg

tvar
tvar

( )1/3 svar

svar

( )2/3 |m|
|m|

( )2/3
: (4)

The last three terms in Eq. (4) quantify the relative importance
of the correlation time of internal variability, the standard devia-
tion of internal variability, and the strength of forced trends to
differences in climate signal emergence between months of the
year, respectively. Values greater than one indicate that emer-
gence is delayed relative to the average month while values less
than one indicate that emergence is accelerated relative to the
average month.

c. Improving estimates of climate signal emergence with
climate model large ensembles

The previously described signal-to-noise method [Eqs. (1)
and (2)] was developed with observational time series in mind.
This method has advantages that make it an excellent tool to
aid satellite mission design: it can be expanded to account for
additional sources of uncertainty and is well-suited for predict-
ing emergence using a single incomplete observational time se-
ries (Weatherhead et al. 1998; Leroy et al. 2008; Wielicki et al.
2013). The signal-to-noise method, however, does not consider
how information about climate variability and future climate
change can be used to improve estimates of climate signal

S HAW AND KAY 733915 OCTOBER 2023

Brought to you by University of Colorado Libraries | Unauthenticated | Downloaded 09/29/23 04:43 PM UTC



emergence. Indeed, the signal-to-noise method ignores that
1) trends may vary in time due to nonlinearities in both forcings
or feedbacks, 2) trends may have large reasonable ranges result-
ing from internal climate variability, and 3) climate variability
(both correlation time and standard deviation) may differ be-
tween the preindustrial and modern climate states. In particular,
ignoring the range of possible forced trends avoids acknowledg-
ing that time to emergence is inherently uncertain due to inter-
nally generated climate variability.

Ensemble climate model simulations can be used to over-
come the limitations of the signal-to-noise method. First, indi-
vidual model ensemble members can project future climate
changes (Fig. 1b). These simulations account for future changes
in forced trends that cannot be inferred from observations
(Fig. 1a). Second, initial condition large ensembles enable the
separation of forced and unforced climate changes. Knowledge
of the forced response removes uncertainty due to internal vari-
ability from the predicted time to emergence (Fig. 1c). Addi-
tionally, knowledge of unforced climate changes allows time to
emergence to be described probabilistically rather than as a sin-
gle time (Figs. 1d–f).

Long preindustrial control model simulations also provide
a valuable tool for time-to-emergence studies. Simply put,
these simulations allow one to calculate the background of in-
ternal variability from an unforced climate rather than at-
tempting to disentangle forced and unforced climate change.
Furthermore, we can use preindustrial control simulations to
study the influence of changing internal variability on predic-
tions of emergence.

Informed by the above analysis (Fig. 1) and previous meth-
ods, we employ the following approach for estimating time to
emergence. 1) We compute monthly and annual-averaged time
series of Arctic OLR as area-weighted means over the Arctic
(708–908N) for observed and modeled fields. Our comparisons
of twenty-first-century time series (CERES observations and
the CESM1-LE) begin in 2001, the first complete year of the
CERES record. 2) We calculate the standard deviation and cor-
relation time of internal variability using the CESM1 preindus-
trial control simulation. When calculating the correlation time,
we use the method of Weatherhead et al. (1998), which calcu-
lates the correlation time using the lag one value of the autocor-
relation function. Compared to the method of Leroy et al.
(2008), Weatherhead et al. (1998) leads to lower error in esti-
mates of unforced trend uncertainty (Fig. S1 in the online
supplemental material). 3) We use our estimated standard devia-
tion and correlation time to calculate the background of internal
variability [sm in Eq. (1)]. 4) We calculate emergence by combin-
ing internal variability with observed and modeled OLR time se-
ries using Eq. (2). We use an approach similar to Feldman et al.
(2011) and Sledd and L’Ecuyer (2021a) to account for the time
dependence of forced trends. Namely, a trend in the climate sig-
nal of interest is recalculated after each year is added to the time
series. Then, each trend is compared to trend uncertainty result-
ing from internal variability, and emergence occurs when the
trend exceeds two standard deviations of this trend uncertainty
for the last time. We repeat this process for each member of the
large ensemble to generate a distribution of emergence times
due to internal climate variability. 5) Finally, we bootstrap this

FIG. 1. Predicting climate signal detection aided by climate model simulations. Changes in central Arctic (708–908) December sea ice
fraction data are used as an example. (a) A constant forced trend (solid line) compared to two standard deviations of internal climate vari-
ability (shaded region), (b) a time-varying forced trend from a single climate model simulation (solid line) compared to two standard devi-
ations of internal climate variability (shaded region), and (c) 40 time-varying forced trends from a climate model large ensemble (solid
lines) compared to two standard deviations of internal climate variability (shaded region). (d)–(f) The probability of climate signal emer-
gence corresponding to the forced trends assumed in (a)–(c), respectively. Time-varying trends are taken from the CESM1 Large Ensemble,
and the background of internal climate variability is taken from the CESM1 preindustrial control simulation and calculated using Eq. (1).
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distribution 3000 times to estimate confidence intervals on time
to emergence.

3. Results

a. Observed and modeled changes in Arctic climate
(2001–21)

For broad context, we begin by presenting observations of
multiple Arctic climate variables that are all available over
the time period 2001–21. These observations show Arctic sea
ice loss, surface warming, and corresponding changes in top-
of-atmosphere radiation (Fig. 2). In recent decades, Arctic
sea ice extent decreases occurred at the seasonally varying sea
ice margin (Fig. 2a). Each year, seasonal ice loss began at the
southerly sea ice edge in March and April and moved north-
ward following the ice edge retreat. The greatest and most
northerly sea ice loss of all months occurred in September.
During October and November, the location of the greatest
ice loss shifted back South following the ice edge. Surface
temperature changes (Fig. 2b) show the greatest warming in

the fall and spring and only modest warming in the summer.
In contrast to surface temperature, increases in absorbed
shortwave radiation (Fig. 2c) were greatest during peak inso-
lation in June and July. Shortwave changes shifted to more
northerly latitudes from May to July, following the northward
retreat of the sea ice edge. Finally, OLR (Fig. 2d) increased
poleward of 708N from September through February. Nota-
bly, OLR increases coincided meridionally and seasonally
with surface temperature increases.

Having documented recent observed changes, we next as-
sess how these observed changes compare to the forced re-
sponse from the CESM1-LE. Overall, forced trends (Fig. 3)
strongly resemble the observed trends (Fig. 2), demonstrat-
ing the human fingerprint on Arctic climate change. Indeed,
observed Arctic change bears a strong spatial and seasonal
resemblance to the forced response. Like observations, the
forced response shows sea ice loss following the sea ice edge
during retreat and advance (Fig. 3a). Corresponding in-
creases in absorbed shortwave radiation (Fig. 3c) resemble
patterns of sea ice loss during the bright summer months.
Also similar to observations, large surface warming in the

FIG. 2. Observed Arctic trends over the period 2001–21: (a) sea ice concentration from the National Snow and Ice
Date Center G02202 data product (Meier et al. 2021), (b) surface temperature from the Berkeley Earth Surface Tem-
peratures gridded data product (Rohde and Hausfather 2020), (c) absorbed shortwave radiation from Clouds and the
Earth’s Radiant Energy System (CERES) (TOA v4.1) (NASA/LARC/SD/ASDC 2019), and (d) all-sky outgoing
longwave radiation from CERES (TOA v4.1) (NASA/LARC/SD/ASDC 2019). Stippling indicates trend confidence
. 99% calculated using a Student’s t test.
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fall (Fig. 3b) is associated with increases in outgoing long-
wave radiation (Fig. 3d). A notable exception is observed
spring warming, which is absent from the forced response
(Fig. 3b).

In addition to providing an estimate of the forced response,
we also use the CESM1-LE to quantify internal climate vari-
ability. The standard deviation in CESM1-LE Arctic trends
(Figs. 4a–d) shows where internal climate variability contrib-
utes uncertainty to simulated Arctic climate change. Interest-
ingly, this internal variability uncertainty resembles the
magnitude of the forced trends across all variables. In other
words, the rate of forced change is generally faster when un-
forced internal variability is large. Internal variability in April
and May OLR changes (Fig. 4d), however, is disproportion-
ately large relative to forced OLR trends (Fig. 3d). This en-
hanced OLR variability during the Arctic spring suggests that
observed OLR increases (Fig. 2d) have large contributions
from internal climate variability.

The ratio of the forced response (signal) to the trend stan-
dard deviation (noise) provides a simple estimate of trend sig-
nificance (Figs. 4e–h). All variables show distinct spatial and
temporal features in their signal-to-noise ratios. In the sea ice,
surface temperature, and OLR fields, signal-to-noise ratios
are larger in the fall months than in other parts of the year.
This seasonality suggests that forced changes during the fall

are more significant than other months. Compared to sea ice
and surface temperature, however, the signal-to-noise ratio
for OLR is smaller. From this comparison, we expect that the
emergence of OLR changes will lag that of surface warming
and sea ice loss.

We next present changes in Arctic OLR (Fig. 5) to compare
observations with the CESM1-LE. Overall, Fig. 5 shows that
Arctic OLR changes vary seasonally, but are also subject to
large uncertainty from internal variability. Average monthly
OLR changes from the CESM1-LE are largest from October
through January and smallest during June and July (Fig. 5a).
Despite this seasonal behavior present in the forced re-
sponse, confidence intervals on the forced changes show
that internal variability makes the magnitude and even
sign of OLR changes from any single ensemble member
uncertain. Observationally, OLR changes from CERES lie
within the 95% confidence interval of the large ensemble
for all months except August. The distinct seasonal maxi-
mum and minimum seen in the modeled forced response,
however, are obscured by internal climate variability in
CERES observations.

Finally, we compare observed OLR changes from CERES
with unforced changes in the preindustrial control simulation
(Fig. 5b) to investigate if observed change can be distinguished
from internal climate variability. Only observed OLR changes

FIG. 3. Arctic trends over the period 2001–21 from the CESM1-LE forced response: (a) sea ice concentration, (b) sur-
face temperature, (c) absorbed shortwave radiation, and (d) all-sky outgoing longwave radiation.
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in October lie outside of the confidence interval on unforced
trends, indicating that most 2001–21 observed monthly OLR
changes are not distinct from unforced internal variability. Our
definition of emergence requires that a trend leaves the range
of unforced variability and remains outside of that range. Be-
cause the CERES October trend sits just outside of internal
variability and may re-enter with additional years of observa-
tions, we state only that the trend is outside of internal
variability.

b. Quantifying Arctic outgoing longwave radiation time
to emergence

Having presented OLR change and internal variability sep-
arately (Figs. 2–5), we now combine forced changes and vari-
ability to predict the emergence of OLR trends for an
observational record beginning in 2001 (Fig. 6). Changes in
annual mean OLR emerge after 20 years on average, with a
95% confidence interval from 12 to 30 years. Comparing time
to emergence for individual months shows a seasonal cycle

FIG. 4. Arctic OLR trend standard deviations and signal-to-noise ratios (SNRs) over the period 2001–21 from members of the CESM1-
LE. (a)–(d) The standard deviation of sea ice concentration, surface temperature, absorbed shortwave radiation, and all-sky outgoing
longwave radiation trends from members of the CESM1-LE (N5 40), respectively. (e)–(h) As in (a)–(d), but for the SNR of Arctic trends
from the CESM1-LE forced response (Fig. 3) relative to trend standard deviations. In (g), latitudes with monthly mean solar insolation
less than 10 Wm22 are masked.

FIG. 5. Monthly and annual trends in all-sky Arctic outgoing longwave radiation (2001–21). (a) Red markers show
mean outgoing longwave radiation trends from the CESM1-LE. Vertical lines span 95% confidence interval on
single-member trends calculated using bootstrapping. Stars show observed trends from CERES over the same period.
(b) Blue lines span a 95% confidence interval on single-member 21-yr unforced trends from the CESM1-LE pre-
industrial control simulation calculated using Eq. (1). Stars are as in (a).
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with earlier emergence in the fall and later emergence in the
spring. In particular, the mean time-to emergence in September
(22 years, 95% confidence interval 13–31 years) occurs
two decades before the mean time to emergence in April
(42 years, 95% confidence interval 22–61 years). While
simulated OLR changes from some members of the CESM1-
LE do emerge during the period of the current CERES record
(2001–21), observed changes largely remain within internal
variability (Fig. 5).

Because OLR emergence varies spatially, we present Arctic
maps of time to emergence in Fig. 7. Spatial patterns of time
to emergence show that even for a single month, some loca-
tions emerge as much 50 years before others. In November,
for example, the average time to emergence at latitudes
poleward of 808N is generally 20–30 years while the time to
emergence in the Barents and Greenland Seas is greater than
70 years. These large differences in the spatial time to emer-
gence indicate that the climate processes that mediate OLR
trends and variability are not constant over the Arctic.

Next, we compare the spatial time to emergence with that of
the area-weighted Arctic (708–908N). This comparison enables
us to understand how spatial averaging influences OLR emer-
gence. In general, the spatial time to emergence is longer than
the Arctic average. This occurs because Arctic averaging re-
duces internal climate variability and thus trend uncertainty.
However, in some months and regions the spatial time to emer-
gence is similar to or even less than the Arctic average (e.g., lati-
tudes poleward of 808N in October–December). In these
locations, the rapid pace of local change outweighs the reduc-
tion in trend uncertainty from spatial averaging.

The annual cycle of emergence shown in Fig. 6 differs from
corresponding annual cycle in the forced trends (Fig. 5). For ex-
ample, the largest forced trends occur in November, but the ear-
liest emergence occurs two months before in September. In
other words, the monthly pattern of forced trends alone cannot
explain the monthly pattern of emergence. This mismatch

between forced trends and time to emergence leads us to next
investigate monthly patterns of internal climate variability.

To understand seasonal variations in OLR internal variabil-
ity, we next compare monthly values of the standard deviation
and correlation time of Arctic OLR (Fig. 8). Monthly OLR
standard deviations are smallest in the boreal summer and
greatest in the winter. In the summer, surface emission tem-
peratures are tied to the melting point of water due to latent
heat changes from sea ice melt. Even in the absence of sea
ice, the large thermal reservoir of the open ocean moderates
surface temperatures and OLR. Conversely, relatively large
winter OLR variability coincides with an ice-covered Arctic
surface with relatively low heat capacity. Most months have
correlation times near one (Fig. 8b), indicating little memory
at interannual and longer time scales. Performing the annual
average removes monthly scale variability and reduces the
standard deviation of internal variability (Fig. 8a). Lower fre-
quency variability increases in the annual average, however,
increasing the correlation time (Fig. 8b). Correlation times
are greater than one in September and October because OLR
during these months is a response to shortwave energy ab-
sorbed over the entire melt season, naturally averaging over
nearly half of the year.

Having examined monthly and annual differences in internal
variability and forced trends, we now quantify how these differ-
ences delay and accelerate emergence. Equation (4) allows us
to distinguish the relative importance of internal variability and
forced trends throughout the year (Fig. 9). Monthly differences
in correlation time generally have a relatively small (,10%) in-
fluence on time to emergence (blue bars). The correlation time
is of secondary importance to emergence even in September
and October when the correlation time is anomalously large.
Monthly OLR standard deviations (orange bars) accelerate
emergence in the summer and delay it in the fall and winter.
Compared to the standard deviation, differences in forced
trends (green bars) have a similar magnitude effect but different
timing. Specifically, the seasonality of forced trends delays sum-
mer emergence and accelerates fall and winter emergence. As a
result, the effects of internal variability magnitude and forced
trend strength on time to emergence oppose each other for
most of the year, similar to how the forced trend strength and
standard deviation in Figs. 3 and 4 resemble each other. Inter-
estingly, the earliest (September) and latest (April) months to
emerge occur in the shoulder seasons when trend strength and
uncertainty do not oppose each other.

Studying OLR emergence using monthly resolution time
series shows the importance of seasonal Arctic climate pro-
cess. Choosing a temporal resolution determines the relevant
time scales of both trends and variability. For example, aver-
aging annually reduces variability while also removing the
seasonality of forced change. Figure S2 compares OLR time
to emergence at temporal resolutions from one day to one
year. We find that monthly averages capture the seasonality
of forced change while reducing variability relative to higher
resolution time series. On the other hand, annually averaged
OLR emerges earliest on average, but does not resolve the
seasonal features of the Arctic climate system.

FIG. 6. Monthly and annual time to emergence of all-sky Arctic
outgoing longwave radiation for members of the CESM1 Large
Ensemble. Error bars span a bootstrapped 95% confidence interval
on estimated time to emergence. The dashed gray line indicates
the current length of the CERES observational record.
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c. Surface and top-of-atmosphere longwave
radiation changes

We next separate the influence of the Arctic surface, atmo-
sphere, and clouds on OLR emergence. Surface upwelling

longwave radiation, clear-sky OLR, and OLR from the CESM1-
LE, respectively, represent the longwave radiation from the sur-
face alone, the surface and clear-sky atmosphere, and the surface
and all-sky atmosphere. Comparing changes in these radiation
variables (Fig. 10) illustrates how the atmosphere and clouds

FIG. 8. Preindustrial internal variability in Arctic outgoing longwave radiation: (a) standard deviation (svar) and
(b) correlation time (tvar). Values are calculated using years 400–2200 of the CESM1 1850 preindustrial control
simulation.

FIG. 7. Spatial maps of the monthly and annual mean time to emergence of all-sky Arctic outgoing longwave radiation (OLR). Panels
show the CESM1-LE ensemble mean time to emergence for time series beginning in 2001. The time to emergence of the area-weighted
Arctic (708–908N) average OLR from Fig. 6 is reported in the title of each plot.
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damp the signal of surface-driven OLR changes. Increases
in surface upwelling longwave radiation are always larger
than increases in OLR and clear-sky OLR, indicating a
strengthening greenhouse effect. Specifically, the trend in
annually averaged upwelling surface longwave radiation in-
creases by 32% while the trend in annually averaged OLR
increases by only 7% (Fig. 10b). These greater increases in
surface upwelling longwave radiation are consistent with
surface-dominated Arctic warming. Expressed in the con-
text of radiative forcings and feedbacks, the negative feed-
back from surface warming via the Planck effect is opposed
at the TOA by both greenhouse gas forcing and positive
feedbacks active in the Arctic. The same positive feedback

processes that enhance Arctic warming also delay OLR
emergence.

Temporally, differences between OLR and surface upwell-
ing longwave radiation trends increase between the period of
the current CERES record (2001–21, Fig. 10a) and the first
half of the twenty-first century (2001–50, Fig. 10b). To further
show how the greenhouse effect evolves in time, we addition-
ally include time series of the normalized all-sky and clear-sky
greenhouse effect in Fig. S3. All months show an increasing
greenhouse effect, but changes in November, December, and
January are the largest. Overall, Fig. 10 and Fig. S3 show that
increases in surface upwelling longwave radiation are damped
at the TOA by an increasingly opaque atmosphere.

FIG. 9. Monthly differences in emergence time (gray) decomposed into contributions from
correlation time tvar (blue), standard deviation svar (orange), and trend mest (green). Values are
calculated from Eq. (4) using the CESM1 Large Ensemble and years 400–2200 of the CESM1
1850 preindustrial control simulation.

FIG. 10. Surface and top-of-atmosphere longwave radiation (OLR) trends from the CESM1 Large Ensemble forced
response: (a) 2001–21 and (b) 2001–50. Blue lines show surface upwelling longwave radiation trends. Black lines show
clear-sky OLR trends. Yellow lines show all-sky OLR trends.

J OURNAL OF CL IMATE VOLUME 367346

Brought to you by University of Colorado Libraries | Unauthenticated | Downloaded 09/29/23 04:43 PM UTC



To complete our understanding of how the atmosphere and
clouds influence OLR emergence, we now examine internal
variability for all three radiation fields. Having previously
shown that the correlation time of internal variability explains
little of the monthly differences in emergence (Fig. 9), we
combine the standard deviation and correlation time to pre-
sent the net internal variability in Fig. 11. Net internal vari-
ability is lowest in the summer and greatest in the Arctic fall
and winter for all OLR fields. This seasonal pattern resembles
the standard deviation of OLR (Fig. 8) and confirms that the
standard deviation term largely determines the annual cycle
of OLR internal variability. Comparing longwave radiation
fields, the variability of clear-sky OLR and all-sky OLR is less
than surface upwelling longwave radiation for all months. The
atmosphere damps variability in surface upwelling longwave
radiation for all months, preserving the seasonal cycle of in-
ternal variability. Quantitatively, however, the greatest frac-
tional reductions in the variability of all-sky OLR relative to
surface upwelling longwave radiation occur from August
through November. Clouds damp variability more than the at-
mosphere alone during these months, while slightly increasing
variability during the early summer. Overall, the atmosphere
and clouds’ damping effect on OLR variability is greatest in
the late summer and fall when the atmosphere is moist and
opaque.

Combining forced trends (Fig. 10) and internal variability
(Fig. 11), we present the time to emergence of changes in
OLR, clear-sky OLR, and surface upwelling longwave radia-
tion from the CESM1-LE (Fig. 12). All three variables show
emergence occurring earliest in the fall and latest in the
spring. Additionally, surface longwave radiation emerges be-
fore the top-of-atmosphere longwave radiation for all months,
indicating that the Arctic atmosphere and clouds always delay

emergence. How long the atmosphere and clouds delay emer-
gence by, however, varies by month. From December through
July, the Arctic atmosphere and clouds delay emergence by
up to 15 years relative to surface upwelling longwave radia-
tion. From August through December, on the other hand,
emergence is only slightly delayed. By delaying OLR emer-
gence most in the winter and spring, the atmosphere and
clouds enhance monthly differences in the time to emergence
of surface upwelling longwave radiation.

The atmosphere and clouds enhance these monthly differ-
ences by unequally damping variability in surface upwelling
longwave radiation. At the surface, variability in upwelling long-
wave radiation is greater in the fall than in the spring (Fig. 11).
At the TOA, however, all-sky OLR variability is less in the fall
than in the spring. With less variability at the TOA relative to
the spring, fall changes emerge earlier and seasonal differences
are widened.

d. Influence of changing outgoing longwave radiation
variability on time to emergence

So far, we have neglected the influence of changing OLR
variability on emergence. Here, we assess if this simplification
is justified. We first note that twenty-first-century OLR vari-
ability does not affect the forced response and thus the mean
time to emergence. If OLR variability changes, however, so
will the uncertainty in projected change and the range of pos-
sible emergence times. We investigate if the uncertainty in
twenty-first-century OLR changes differs from uncertainty in
unforced preindustrial OLR changes (Fig. 13). For all months
of the year, the uncertainty in twenty-first-century OLR
trends is not statistically different from the preindustrial cli-
mate. While some months like October do show a change in

FIG. 11. Monthly and annual longwave radiation net variability
estimated from the CESM1 preindustrial control simulation. Blue
lines show surface upwelling longwave radiation variability. Black
lines show clear-sky OLR variability. Yellow lines show all-sky
OLR variability.

FIG. 12. Monthly and annual time to emergence of changes in
longwave radiation variables for members of the CESM1 Large
Ensemble. Blue lines show surface upwelling longwave radiation
time to emergence. Black lines show clear-sky OLR emergence.
Yellow lines show all-sky OLR emergence, reproduced from
Fig. 6. Shaded regions and error bars span a 95% confidence inter-
val on estimated time to emergence. The dashed gray line indicates
the current length of the CERES observational record. Time to
emergence is calculated with respect to time series beginning in
2001.
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trend variability, these changes occur decades after OLR
emergence. Despite significant changes in the variability of
OLR itself (Fig. S4), emergence is unaffected. Overall, Fig. 13
shows that changes in twenty-first-century variability are too
small and come too late to modify OLR time to emergence.
Thus, neglecting the influence of changing OLR variability is
an acceptable assumption for this study.

Figure 13 also shows that ensemble-derived estimates of
variability and the forced response are made uncertain due to
the relatively small ensemble size. We have already shown the
influence of nonstationarity in variability on emergence tim-
ing is small. Thus, we use the preindustrial control simulation
to quantify the influence of ensemble size on ensemble mean
OLR trends (the forced response). Comparing this uncer-
tainty to the CESM1-LE mean monthly OLR trends (Fig. 13
subpanel titles) indicates that even with 40 ensemble mem-
bers, fractional uncertainty in the CESM1-LE forced response
is 16%–44% depending on the month of the year. This un-
certainty in the forced response can only be reduced by in-
creasing the ensemble size. However, we avoid corresponding

uncertainty in internal climate variability by using preindustrial
control simulations to estimate the background of internal
climate variability. In sum, Fig. 13 demonstrates that ensemble-
based estimates of both a model’s forced response and internal
variability are uncertain. Internal variability should be esti-
mated from long preindustrial control simulations whenever
possible.

e. Influence of sea ice and clouds on OLR emergence

We next investigate how the differing representations of
clouds and sea ice in the CESM1-LE and the CESM2-CMIP5
influence the time to emergence of OLR. Comparing the
mean OLR time to emergence from the CESM2-CMIP5 with
the CESM1-LE (Fig. 14), we find that fall and early winter
months (September–February) emerge later in the CESM2-
CMIP5 than in the CESM1-LE. Outside of these months,
OLR emergence in the CESM2-CMIP5 is not statistically dif-
ferent from the CESM1-LE. Spring months still emerge later
than fall months in the CESM2-CMIP5, but the large seasonal
differences present in the CESM1-LE are notably reduced.

FIG. 13. Difference between forced and unforced OLR trend standard deviations. Blue lines show the difference between the standard
deviation of forced trends beginning in 2001 from the CESM1-LE (N 5 40) and the average standard deviation of trends of the same
length from the CESM1-LE preindustrial control simulation. The gray shaded region indicates a 95% confidence interval on unforced
trend standard deviations also calculated from the CESM1-LE preindustrial control simulation. Vertical bars indicate the mean time to
emergence of outgoing longwave radiation. Positive (negative) values on the y axis indicate more (less) trend variability than the preindus-
trial Arctic. The 95% confidence interval of mean 21-yr trends from a 40-member ensemble is expressed as a percentage of the CESM1-
LEmean 2001–21 OLR trend in the title of each subplot.
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To understand why fall OLR in the CESM2-CMIP5 emerges
later than in the CESM1-LE, we next evaluate how the internal
variability and forced trends in longwave radiation differ be-
tween the CESM1-LE and the CESM2-CMIP5 (Fig. 15). Surface
upwelling longwave radiation trends in the CESM2-CMIP5 are
less than in the CESM1-LE during the fall, indicating a slower
rate of surface warming. This slower rate of surface change trans-
lates to smaller OLR trends, delaying OLR emergence. In the
summer, however, OLR increases are comparable between the
CESM1-LE and the CESM2-CMIP5 despite larger surface
warming in the CESM1-LE. This seasonal difference between
radiation fields suggests that more opaque summer clouds and
atmosphere in the CESM2-CMIP5 than the CESM1-LE pre-
vent differences in surface warming from influencing the TOA
longwave radiation budget.

Having compared forced trends in longwave radiation between
the CESM1-LE and the CESM2-CMIP5, we now compare the
net internal climate variability (Fig. 15b). Surface longwave radia-
tion variability in the CESM2-CMIP5 is greater than in the
CESM1-LE from November through April, but less than in the
CESM1-LE from June through September. Despite these differ-
ences in variability at the surface, however, OLR variability in the
CESM1-LE and the CESM2-CMIP5 is very similar at the TOA.
Collectively, comparing forced trends and variability between the
CESM1-LE and the CESM2-CMIP5 indicates that more rapid
fall surface warming in the CESM1-LE drives the differences in
OLR emergence at the top of the atmosphere. Surface longwave
radiation in the CESM2-CMIP5 has different variability than the
CESM1-LE, but TOA differences in OLR variability are small.

The CESM2-CMIP5 emerges later than the CESM1-LE be-
cause it warms less in the fall, but why does this occur?We answer
this question by comparing the total shortwave radiation absorbed
during the melt season (March–September) with longwave

radiation emitted during the Arctic fall (August–November)
(Fig. 16). Consistent with the seasonal transfer of energy
from summer to fall, longwave radiation emitted during the
fall strongly resembles the shortwave energy absorbed during
the summer. In other words, the CESM2-CMIP5 absorbs
shortwave radiation more slowly than the CESM1-LE, caus-
ing it to emit less longwave radiation during the fall and
emerge later.

To confirm that differences in shortwave absorption are re-
sponsible for fall OLR differences, we additionally determine
the time to emergence of TOA absorbed shortwave radiation.
We present these results for individual months during the
melt season (March–September) as well as for the annual
mean in Fig. 17. Our results show that the time to emergence
of Arctic absorbed shortwave radiation precedes that of out-
going longwave radiation (Fig. 6) by nearly 5 years in the an-
nual average, and by two decades for individual months. That
said, both shortwave and longwave radiation share that they
emerge latest in spring and earliest in late summer and early
fall. Also consistent with our outgoing longwave radiation re-
sults, fall Arctic absorbed shortwave radiation emerges later in
the CESM2-CMIP5 than the CESM1-LE (Fig. 17b). Collec-
tively, comparing the time to emergence of OLR and absorbed
shortwave radiation supports our conclusion that clouds and sea
ice mediate the emergence of fall OLR by modifying the short-
wave energy budget during the melt season.

4. Discussion

When will changes in Arctic longwave radiation emerge
from internal variability? Why do some months emerge ear-
lier than others? We have investigated these questions by ex-
panding the standard signal-to-noise framework of climate
signal emergence to comprehensively consider internal cli-
mate variability in future changes. One of the most important
results we find is that the predicted time to emergence of Arc-
tic OLR varies by month. Specifically, the mean time to emer-
gence in September (22 years) precedes April (42 years) by
two decades. Observed OLR changes from the CERES record
(2001–21) largely remain within the CESM1-LE’s estimate of
internal climate variability. The probability of emergence for
fall months and the annual average, however, surpasses 50% by
2025. With spring emergence predicted decades later, our results
underscore the necessity of a seamless energy budget record ex-
tending into the mid-twenty-first century. Upcoming radiation
budget continuity missions (e.g., NASA’s Libera) will be critical
for the future detection and attribution of Arctic climate
change.

A further novelty of this work is that we identify how sur-
face and atmospheric climate processes influence OLR time
to emergence by comparing radiation fields. We find that
monthly differences in emergence are driven by differences in
surface warming and internal variability. Monthly differences
in surface warming are linked to the well-studied processes of
sea ice–albedo feedback and seasonal energy transfer (e.g.,
Serreze and Barry 2011). Monthly differences in OLR inter-
nal variability are linked to the seasonally changing heat
capacity of the Arctic surface as well as the opacity of the

FIG. 14. Monthly and annual time to emergence of all-sky Arctic
outgoing longwave radiation (OLR) for CESM2-CMIP5 simula-
tions. The mean time to emergence of OLR from 10 simulations of
CESM2 with CMIP5 forcing (CESM2-CMIP5) is compared with
the CESM1-LE. Black crosses show the mean time to emergence
of the CESM2-CMIP5 simulations. Yellow markers and error bars,
respectively, show the mean time to emergence of the CESM1-LE
and a 95% confidence interval obtained by bootstrapping with
samples of 10 for comparison with the CESM2-CMIP5 simulations.
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atmosphere and clouds. The atmosphere and clouds delay
emergence most in the winter and spring. Minimal coupling
between the surface and atmosphere during this time likely
prevents surface changes from being observed from space.
Our results suggest that accurately predicting the future Arctic
energy budget requires a realistic representation of all of these
processes in climate models.

Comparing the CESM1-LE and CESM2-CMIP5 ensembles
reveals how Arctic clouds and sea ice influence OLR emer-
gence. With fewer optically thick, liquid-containing clouds, the
shortwave energy budget in the CESM1-LE is more sensitive to
sea ice loss than the CESM2-CMIP5, leading to faster energy
uptake and more rapid fall warming. The mean state of Arctic

sea ice also contributes to differences between model versions:
the CESM1-LE starts with greater sea ice coverage than
CESM2 and loses that sea ice more rapidly (Holland et al. 2023,
manuscript submitted to Geosci. Model Dev.). These results in-
dicate that the shortwave radiation budget during the critical
melt season has an outsized role in determining the emergence
of fall OLR. Fall sea ice and cloud states are less important than
the uptake of solar radiation during the summer. As a whole,
these results demonstrate that the time to emergence of fall
OLR changes depends largely on the representation of summer
sea ice and clouds. Consequently, the large monthly differences
between spring and fall OLR time to emergence also depend
on summer sea ice and clouds.

FIG. 15. Comparison of longwave radiation changes and variability between the CESM1-LE and the CESM2-
CMIP5. (a) Mean longwave radiations trends from 2001 to 2050. Surface upwelling longwave radiation (blue), TOA
clear-sky outgoing longwave radiation (black), and TOA all-sky outgoing longwave radiation (yellow). Dashed lines
show values from the CESM2-CMIP5 and shaded regions show a 95% confidence interval from the CESM1-LE.
(b) Net variability of longwave radiation from preindustrial control simulations. Colors are as in (a).

FIG. 16. Change in absorbed shortwave and emitted longwave radiation in the CESM1-LE and the CESM2-
CMIP5. (a) Change in shortwave radiation absorbed over the melt season (March–September) relative to preindus-
trial control. (b) Change in longwave radiation emitted over the fall (August–November) relative to preindustrial con-
trol. Bootstrapping is used analogously to Fig. 14 to compare ensembles of different sizes.
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In addition to studying monthly differences in time to emer-
gence, we also examined the emergence of changes in annu-
ally averaged OLR. Annually averaged OLR changes (Fig. 6)
emerge before all individual months, despite being by defini-
tion their average. While the annual mean OLR trend is in-
deed the average of trends for individual months (Fig. 5), the
annual mean internal variability is reduced relative to the
mean of individual months (Fig. 8), accelerating emergence.
Annually averaged OLR would likely emerge even earlier rel-
ative to individual months in regions other than the Arctic,
where seasonal contrasts are less extreme.

Emergence studies using a single model large ensemble
have distinct advantages and disadvantages compared to
studies using few ensemble members across multiple models.
Single-model large ensembles can isolate the role of internal
variability but ignore uncertainty in model physics. Multimo-
del studies account for both internal climate variability and
model physics but cannot separate their relative importance.
We address the former shortcoming by using a model that has
been extensively validated in the Arctic. To address the latter,
multimodel studies often use synthetic ensembles to estimate
the role of internal climate variability alone (e.g., Chepfer
et al. 2018; Sledd and L’Ecuyer 2021a). A synthetic ensemble
estimates both variability and forcing from a single simu-
lation, and then creates “synthetic” time series with these
estimated properties. To evaluate the synthetic ensemble
approach, we generate a synthetic ensemble of annually aver-
aged OLR time series from each member of the CESM1-LE
following the methods of Chepfer et al. (2018) and Sledd and
L’Ecuyer (2021a). We find that only a single synthetic ensemble
produces a time-to-emergence distribution that is indistinguish-
able from the large ensemble’s “true” distribution (Fig. S5c).

The remaining synthetic ensembles uniformly underestimate
both the mean and standard deviation of OLR emergence
(Figs. S5a,b). This result suggests that a large ensemble may be
needed to sample the full range of internal climate variability in
the Arctic.

By studying climate signal emergence using model fields
free from measurement uncertainty, our results represent a
lower limit on time to emergence. Accounting for observa-
tional uncertainty will delay the predicted time to emergence,
but by how long is yet to be studied. Quantifying this delay re-
quires not only estimates of instrument uncertainty and satel-
lite drift, but also knowledge of the underlying correlation
structure of the gridded observations used to compute Arctic
time series. Furthermore, methods accounting for observa-
tional uncertainty within the signal-to-noise framework (Leroy
et al. 2008) do not consider observational records that com-
bine multiple instruments over various time scales, such as
CERES.

While we have used the CERES record here, broadband
radiation is not the only multidecadal satellite record of Arc-
tic change. Multidecadal spectral OLR records (e.g., from
NASA’s Atmospheric Infrared Sounder) provide further in-
sight into OLR changes. Specifically, spectral radiation is
more easily traced to the climate processes driving emergence
than broadband radiation (e.g., Huang 2013; Peterson et al.
2019). Unfortunately, the modeled spectral OLR needed to
estimate the background of internal variability and project
future change is rarely produced by models. If spectral model
fields were available, however, the methods developed here
could be applied to identify the spectral drivers of emergence
and expose compensating biases hidden in broadband OLR.
Easy-to-use and computationally affordable tools for producing

FIG. 17. Monthly and annual time to emergence of top-of-atmosphere all-sky Arctic absorbed shortwave radiation.
(a) Average time to emergence and uncertainty in the CESM1-LE. Blue error bars span a bootstrapped 95% confi-
dence interval on time to emergence for individual (N 5 1) ensemble members, (b) Time to emergence in the
CESM1-LE and CESM2-CMIP5 ensembles. Yellow error bars indicate a bootstrapped 95% confidence interval on
10-member ensembles from the CESM1-LE. In both panels the dashed gray line indicates the current length of the
CERES observational record.
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spectral OLR will open new doors for studies of climate change
attribution and climate model evaluation.

5. Conclusions

This study investigates the influence of seasonal Arctic cli-
mate processes on the emergence of Arctic outgoing longwave
radiation (OLR). We combined satellite observations and cli-
mate model large ensemble data to evaluate OLR emergence,
compared monthly emergence differences, and traced those dif-
ferences to specific Arctic climate processes. The major conclu-
sions of this work are:

1) September is the earliest month to emerge (mean emer-
gence of 22 years for observations beginning in 2001),
while April is the latest month to emerge (mean emer-
gence of 42 years for observations beginning in 2001).
This difference is due in roughly equal parts to lower in-
ternal variability in September compared to April and
greater forced change in September compared to April.

2) Internal variability leads to a wide range of possible OLR
emergence times. The 95% confidence interval on September
OLR emergence spans 19 years from 2014 to 2032 while
the 95% confidence interval on April OLR emergence
spans 40 years from 2023 to 2062.

3) Surface changes control the seasonal behavior of OLR
emergence. The Arctic atmosphere and clouds delay emer-
gence more in the winter and spring than in the fall, increas-
ing the monthly differences set by surface changes.

4) Forced changes in sea ice concentration, surface tempera-
ture, and broadband top-of-atmosphere radiation resemble
the observed trends, demonstrating the human fingerprint
on Arctic climate change.

5) Differences between preindustrial and twenty-first-century
OLR variability do not modify predictions of OLR emer-
gence. OLR variability becomes statistically different from
preindustrial variability during the twenty-first century, but
this change in variability occurs too late to modify the
trends that determine emergence.

6) The accurate representation of clouds and sea ice has a
large impact on fall OLR time to emergence. Specifically,
larger preindustrial sea ice extent and a less opaque atmo-
sphere during the melt season causes more fall warming
and earlier emergence.
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