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Abstract: We demonstrate the use of a flexible digital servo system for the optical stabilization
of both the repetition rate and carrier-envelope offset frequency of a laser frequency comb. The
servo system is based entirely on a low-cost field programmable gate array, simple electronic
components, and existing open-source software. Utilizing both slow and fast feedback actuators
of a commercial mode-locked laser frequency comb, we maintain cycle-slip free locking of
optically-derived beatnotes over a 30 hour period and measure residual phase noise at or below
∼0.1 rad, corresponding to <100 attosecond timing jitter on the optical phase locks. This
stability is sufficient for high-precision frequency comb applications and indicates comparable
performance to existing frequency control systems. The modularity of this system allows for it
to be easily adapted to suit the servo actuators of a wide variety of laser frequency combs and
continuous-wave lasers, reducing cost and complexity barriers, and enabling digital phase control
in a wide range of settings.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The first fully-stabilized mode-locked lasers heralded a new age of precision time and frequency
metrology that continues to be an active area of research [1,2]. Indeed, today’s Ti:sapphire,
Er:fiber, and Yb-based combs offer repetition rates ranging from 50 MHz to 10 GHz [3]
and spectra covering 400-2200 nm, with high harmonic generation and intra-pulse difference
frequency generation demonstrating coherent spectra below 100 nm and past 20 µm [4–7]. On
another front, new electro-optic [8,9] and microresonator frequency combs [10–12] suggest a
future in which frequency comb-based synthesizers and optical clocks will be even more tightly
integrated with electronics platforms [13,14]. Together, the wide range of advances will allow
small, robust frequency comb platforms to leave the laboratory and find use in optical timekeeping
[15–18], spectroscopy [19,20], trace gas sensing [21,22], optical ranging [23,24], and astronomy
[25–27].
The frequency modes or "teeth" of a frequency comb are described by the familiar comb

equation, νn = nfrep + fceo, where the frequency of the nth comb tooth νn is determined by the
laser’s repetition rate frep and the carrier-envelope-offset frequency fceo [28,29]. Phase-coherent
control of frep and fceo is essential to the operation of an optical frequency comb and enables
its most powerful applications. The cost and complexity of achieving this stability, however,
pose a challenge to frequency comb applications. A variety of alternate solutions have been
developed to avoid active frequency comb control [30–33], though these approaches exchange
the requirements of active feedback for their own complexity in the form of additional lasers and
electronics, while still requiring feedback for long-term operation. The rapid proliferation of
flexible digital control platforms presents the opportunity to drastically simplify commonly used
analog phase control systems, limiting the need for such workarounds and reducing technical
barriers that limit frequency comb applications.

In comparison to analog feedback loops, digital systems are less sensitive to electro-magnetic
interference [34] and have been demonstrated to unwrap and track phase deviations up to 222π
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radians, greatly exceeding the 2π ambiguity that limits analog systems [35]. Easily tunable
filter parameters and a large and robust capture range are essential for situations that require
stabilizing broad linewidth lasers and for frequency comb systems meant to operate in the
dynamic environments that exist outside the lab [36–39]. Furthermore, digital control can unite
the operation and characterization of a frequency comb onto a single platform. With appropriate
programming, a field-programmable gate array (FPGA) based locking system can also function
as a spectrum analyzer, vector network analyzer, phase noise analyzer, or frequency counter,
reducing the overhead cost associated with an optical phase lock.
Digital phase and frequency control of lasers has been employed in research labs for at least

two decades [40,41], and has more recently been demonstrated to achieve robust frequency comb
stabilization over extended periods without sacrificing short-term stability [37,42,43]. Several
laser suppliers now offer digital control systems as standard products for laser phase stabilization
[44]. Still, the cost of these products may put them out of reach for some labs, and they are
not always suited to drive the feedback actuators of home-built frequency combs. Flexible,
inexpensive platforms for digital stabilization are needed to fully support the diverse applications
of laser frequency combs. This will make phase-stabilization feasible in a wider variety of
settings, including low-cost education-focused projects.
Recently, laser control systems based on the Red Pitaya 125-14 FPGA board [45] have been

used to stabilize optical networks [46] and to provide complete signal lock-in modulation and
demodulation [47]. In this paper, we demonstrate the use of the Red Pitaya and open-source
software as a low-cost digital phase locking system for a commercially-available Erbium:fiber-
based frequency comb. We report residual phase noise in the locks comparable to values reported
by the laser manufacturer, indicating that no significant limitation is imposed by the Red Pitaya.
In the long-term, we maintain optical phase locks free of cycle slips for continuous periods
exceeding one day, with measurements of frequency stability limited by our radio frequency (RF)
standards. We anticipate that this work can serve as a template for servo systems applicable
to a wide range of frequency comb sources, making phase stabilization suitable for a growing
application space.

2. Optical frequency comb and control signal generation

To demonstrate the capabilities of the Red Pitaya FPGA-based frequency control, we employ a
commercial Er:fiber mode-locked laser (Menlo Systems FC1500-250-ULN) with a 250 MHz
repetition rate [48]. All optical locking signals are derived from a polarization-maintaining (PM)
fiber output of 30 mW average power and 40 nm spectral bandwidth centered at 1560 nm. In the
following, we describe the generation of fceo via f-2f interferometry, as well as the control of frep
through the simultaneous optical stabilization of a single mode, νN , of the frequency comb. We
have also used the same FPGA hardware to stabilize frep directly in the microwave domain.

2.1. Optical beat signals

Conventional techniques are employed to generate the error signals (optical beat notes) that
are subsequently processed with the FPGA to control the frequency comb. Generation and
measurement of fceo and an optical beat note fbeat between a continuous wave (CW) and a
single comb tooth [28,49,50] are critical steps in frequency comb stabilization that have been
well-described in the literature. With reference to Fig. 1(a), here we briefly review the details
relevant to our experiments.
To stabilize fceo, we amplify the pulses output from the Er:fiber laser and spectrally-broaden

them to octave bandwidth using polarization-maintaining highly nonlinear optical fiber (PM-
HNLF) [51]. The resulting spectrum is shown in Fig. 2. The output of the PM-HNLF is
coupled into a periodically-poled lithium niobate (PPLN) ridge-waveguide [52] with poling
period optimized for second harmonic generation at 1005 nm. Supercontinuum comb light at 1
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Fig. 1. (a) Block diagram showing the generation and detection of fceo and fbeat. Fem-
tosecond pulses from the laser are amplified in Erbium-doped fiber and compressed in
PM-1550 fiber to produce an octave-spanning spectrum in HNLF. A free-space, dual-ridge,
PPLN waveguide with poling periods optimized for second harmonic generation at 1005 nm
doubles light at 2 µm to 1 µm. We detect fceo at 1 µm, while 1550 nm supercontinuum light is
mixed with light from a cavity-stabilized 1550 nm laser to produce fbeat. (b) Block diagram
showing the electronics feedback chain used to lock fceo and fbeat. EDFA: erbium-doped
fiber amplifier, HNLF: highly non-linear fiber, PPLN: periodically-poled lithium niobate.

µm as well as 2 µm comb light that is frequency doubled in the waveguide are bandpass filtered
before impinging on an InGaAs photodetector. The resulting fceo beatnote is shown in Fig. 3(a),
with 38 dB signal-to-noise ratio (SNR) at 300 kHz resolution bandwidth (RBW).

Fig. 2. Supercontinuum produced in HNLF. Vertical boxes highlight portions of the
octave-spanning spectrum used to produce the fceo beatnote. To broaden sufficiently, we
use 80 fs input pulses with ∼1 nJ pulse energy and 56 cm of PM-HNLF with dispersion 5.7
ps/(nm km) and non-linearity 10.5 (W km)−1.

To stabilize frep, we heterodyne a single comb mode near 1550 nm with a cavity-stabilized
1550 nm CW laser to produce the RF signal fbeat with 43 dB SNR (300 kHz RBW), shown in
Fig. 3(b). A fiber-coupled band-pass filter is used to reduce the comb bandwidth on the detector
to 1 nm before combining with the 1550 nm CW light in a four-port fiber-coupled beam splitter.
The two output ports of the combiner are directed to a balanced photodiode, which outputs fbeat.
We note that stabilizing fbeat instead of directly stabilizing frep provides increased leverage to
control the comb’s repetition rate and achieve optical coherence.
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Fig. 3. Free-running beat notes measured at 300 kHz resolution bandwidth. a. The fceo
heterodyne shows 38 dB SNR. b. The fbeat heterodyne shows 43 dB SNR.

2.2. FPGA hardware and electronic feedback control

We use two Red Pitaya 125-14 FPGA boards to sample and process fceo and fbeat, providing
feedback to stabilize the frequency comb. Each board has two analog inputs and outputs with
14-bit resolution analog to digital (ADC) and digital to analog (DAC) converters. The Red
Pitayas are externally clocked by a 125 MHz maser-referenced signal distributed by a low-noise
clock buffer (LTC6954), allowing them to measure and feedback on signals below the 62.5 MHz
Nyquist sampling frequency. We make a single hardware modification to the Red Pitaya boards
to enable external clocking.

The architecture of the FPGA and python code used to control and monitor the servo loops are
discussed in detail by Tourigny-Plante et al. [46]. In brief, the FPGA mixes the digitized analog
input signal with digitally synthesized I/Q reference frequencies to detect the phase error. A term
proportional to the frequency error is then calculated by taking the difference of the phase error
from one clock cycle to the next. This frequency error is passed into the loop filter which contains
proportional, integral, double-integral and differential terms (PII2D). The output of the loop
filter is sent to the DAC to produce an analog signal that drives the laser actuators. In addition to
running PID loops, the board records the frequency error and the voltage output of both DACs
and displays the lock stability and output range on the python-based graphic user interface (GUI).
Using the GUI as a display, the Red Pitaya can also act as a spectrum analyzer, vector network
analyzer, phase noise analyzer, and frequency counter. All firmware and software employed in
this work are available for download from a fork of the Github repository linked in Ref. [35].

Each FPGA board stabilizes either fceo or fbeat through control of both a fast and slow feedback
source on the laser. This electronics chain is shown in Fig. 1(b). The Er:fiber mode-locked laser
has two EOMs to provide fast feedback on fceo [53] and fbeat. We amplify the −1 to 1 V standard
output of the Red Pitaya DAC with a 15x non-inverting amplifier (AD744) to 30 V of tuning
range on the EOMs. The characteristics of the full electronics chain used to provide feedback are
described in Table 1.
In addition to providing feedback to the EOMs, the output of the fast PID loop serves as the

error signal for the slow servo locks. These auxiliary servos have a greater range, but lower
bandwidth and are used to keep the EOM servos at the center of their range. By setting a large
time constant on the integrator term of these loops, we create slow, secondary feedback that
allows for long-term continuous locking without interfering with the performance of the fast
locks. In order to reach these time constants, the bit depth of the integral terms’ gain was doubled
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Table 1. Feedback Chain Characteristics for Optical Locks.

Control Signal fceo fbeat

Speed Fast Slow Fast Slow

Bandwidth ∼100 kHz 10 Hz ∼100 kHz 1 Hz

Modulation Control FPGA DAC −1 to 1 V FPGA DAC −1 to 1 V FPGA DAC −1 to 1 V FPGA DAC 0 to 1 V

Modulation Source 15x Amplifier Current Controller1 15x Amplifier HV Amplifier2

Modulation Range ±15 V 4 mA ±15 V 15 V

Actuator EOM TEC EOM PZT

Actuator Limits ±48 V ±30 mA ±48 V −15 - 150 V

Tuning Range 11.4 MHz 66 MHz 3.8 MHz 36 MHz

1Thorlabs LDC200CV Current Controller, 0 - 20 mA total range.
2Thorlabs KPZ101 Piezo Controller, 0 - 100 V total range.

with respect to the configuration in Tourigny-Plante et al. [46]. In the case of the Red Pitaya that
stabilizes fceo, the slow feedback (∼10 Hz) drives a current controller (Thorlabs LDC200CV) to
adjust the temperature of the EOM that stabilizes fceo. For slow stabilization of fbeat, the Red
Pitaya’s output serves as modulation for a 0-150 V piezo driver (Thorlabs KPZ101) controlling a
PZT within the laser cavity. While the EOM temperature tunes fceo nearly independently of frep,
the PZT voltage changes fceo as well as the intended repetition rate. This effect is much greater
than the natural drift of fceo, meaning that the slow feedback on fceo serves largely to compensate
for the secondary effects of the PZT. For both slow servos, the standard output voltage range of
the Red Pitaya’s DACs is sufficient to keep the fast EOM servos within their range for several
days.

3. Results and characterization of frequency comb stabilization

When the FPGA (Red Pitaya) servo loops are closed, the linewidths of both fceo and fbeat are
reduced to narrow coherent carriers. Figure 4 shows the phase-locked fceo and fbeat beatnotes at
10 Hz resolution bandwidth. Further analysis of these beats provides characterization of both the
short- and long-term stability of the phase locks.

Fig. 4. a. Stabilized fceo beatnote at 10 Hz resolution bandwidth. b. Stabilized fbeat
beatnote at 10 Hz resolution bandwidth.
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As a consequence of unifying feedback and diagnostics on a single platform, all measurements
made by the FPGA board are completely in-loop with the phase locks. As a result, we observe
artificially low noise at low frequencies where the loop gain is the highest, recording residual
frequency errors in the 100s of nHz on the internal frequency counter. Measurements made at
higher frequencies, such as phase noise, are less affected. To avoid this bias entirely, we report
phase noise and average frequency measurements recorded by instruments out of loop to the
phase locks, but still referenced to a shared maser clock source.

3.1. Short-term locking behavior

Figure 5 shows the phase noise of fceo and fbeat measured from 100 Hz to 2 MHz with an Agilent
MXA N9020A signal analyzer. We measured the integrated phase noise over this bandwidth to
be 114 mrad for fceo and 41 mrad for fbeat. The laser’s manufacturer reports values of 85 mrad
and 43 mrad, indicating that the Red Pitaya FPGA servo system performs comparably to feedback
systems designed specifically for the laser. We calculate the corresponding integrated timing jitter
to be 70 attoseconds, within the requirements of broadband precision dual-comb spectroscopy
and well below the present requirements of optical ranging and fiber-network applications. Both
signals have an effective feedback bandwidth of ˜100 kHz, limited by 565 ns latency of the FPGA
platform [46] and delays within the RF filtering and amplification chain. While these results
were obtained with an intrinsically low noise laser comb, we expect that higher noise laser combs
or large linewidth CW lasers could be stabilized without additional difficulty due to the large
limit and unambiguous nature of the phase error accumulated by the FPGA. The ultimate phase
noise performance of such a combination will be more significantly limited by the system latency
and the bandwidth of the actuators used.

Fig. 5. a. Phase noise (black) and integrated phase noise (purple) on fbeat. The total
integrated phase noise from 100 Hz to 2 MHz is 114 mrad. b. Phase noise (black) and
integrated phase noise (purple) on fceo. The total integrated phase noise from 100 Hz to 2
MHz is 40 mrad.
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3.2. Long-term locking behavior

To demonstrate the consistency of the digital stabilization platform, we leave the comb locked
for extended intervals. Figure 6 shows the frequency deviation of fceo, fbeat, and frep measured
with Agilent 53132A frequency counters over a 30 hour period. These data demonstrate that the
servos can be free of cycle slips over extended timescales.

Fig. 6. Frequency error from set-points over 30 hour period. (a) Frequency error in optical
beat notes fceo (blue) and fbeat (red). The standard deviations of fceo and fbeat are 0.2 mHz
and 0.1 mHz, respectively. (b) Frequency error in frep. After correcting for a linear drift,
the standard deviation of frep is calculated as 0.1 mHz. All measurements were made by
external frequency counters.

The change in frep in Fig. 6(b) shows the slow drift of the 1550 nm optical cavity against the
long-term stability of the maser signal. The 2.5 mHz change in the repetition rate over 30 hours
corresponds to a drift of the 1550 nm optical frequency of only 20 mHz per second. We calculate
the frequency uncertainty at 1 s to be 0.2 mHz and 0.1 mHz for fceo and fbeat, respectively. The
uncertainty of these measurements is limited at this level by both the reported counter uncertainty,
and the instability of the maser-referenced synthesizer used to clock the Red Pitayas.
Figure 7 shows the calculated Allan Deviations of frep, fceo, and fbeat for the same 30 hour

period. For small averaging times, the measurement of all three frequencies is limited by the RF
electronics as previously mentioned. The stability of frep provides an absolute measurement of the
1550 nm cavity against the hydrogen maser, showing that the drift of the repetition rate exceeds
the uncertainty of the counting electronics for averaging times greater than ∼100s. Optically
derived fceo (blue) and fbeat (red) are in-loop measurements effectively indicating the quality of
the servo, and continue to fall off like 1/

√
τ.

3.3. Direct phase locking of frep

Our locking set-up is easily reconfigured to stabilize the repetition rate directly in the RF domain.
While locking the repetition rate at a low harmonic adds noise in the optical domain, it does not
require a stable optical source, and demonstrates the flexibility of the digital locking platform.

When implementing an RF lock, we mix the second harmonic of the 250 MHz repetition rate
(obtained from a photodiode internal to the laser) with a synthesized 480 MHz signal to produce
a 20 MHz beat note. Just as with the optical lock, this signal can be fed into the Red Pitaya and
locked with appropriate settings on the PID loop. Switching between optical and RF locks of
the repetition rate requires us only to change the Red Pitaya’s ADC input and import saved PID
settings to the Red Pitaya through the GUI, a fast and reproducible process. The sensitivity of
the RF and optical beat notes to the frep EOM’s voltage differs by a factor of ∼400,000, in good
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Fig. 7. Allan Deviations for fceo (blue), fbeat (red), and frep (green), during an optical lock.
For small averaging times, all three frequencies are limited by the RF source used to clock
the phase-locks and counters. For averaging times exceeding ∼100 s, the slow drift of the
1550 nm cavity limits the stability of frep. The respective carriers frequencies of fceo, fbeat,
and frep are 300 THz, 193 THz, and 500 MHz.

agreement with the values predicted by the comb equation, and demonstrating the increased
sensitivity and multiplicative advantage of the optical lock.

4. Conclusions

We presented a digital servo system that can be easily configured to stabilize a commercial
frequency comb with EOM, PZT, and current feedback sources. The measured phase noise
values of 41 mrad and 114 mrad on fbeat and fceo, respectively, are in good agreement with the
values reported by the manufacturer. The corresponding timing jitter of 70 attoseconds is suitable
for the most demanding applications of combs in timing and broadband spectroscopy. Cycle-slip
free locking is maintained for 30 hours. The low cost and simplicity of this approach make it
appropriate for student-driven projects. We hope that this servo design can be easily adapted to a
variety of mode-locked lasers, reducing the technical and financial barriers to optically stabilizing
combs.
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